Huang JC, Li XQ, Wu J. A semantic searching scheme in heterogeneous unstructured P2P networks. JOURNAL OF
COMPUTER SCIENCE AND TECHNOLOGY 26(6): 925-941 Nov. 2011. DOI 10.1007/s11390-011-1190-z

A Semantic Searching Scheme in Heterogeneous Unstructured P2P
Networks

Jun-Cheng Huang! (312 &), Member, ACM, IEEE, Xiu-Qi Li? (%75¥5), Member, ACM, IEEE
and Jie Wu? (3% &), Member, ACM, Fellow, IEEE

1 Shanghai Hewlett-Packard Co., Ltd., No. 889 Yishan Road Xuhui, Shanghai 201206, China
2 Department of Computer Science and Mathematics, University of North Carolina at Pembroke, Pembroke, U.S.A.
3 Department of Computer and Information Sciences, Temple University, Philadelphia, U.S.A.

E-mail: juncheng.huang@hp.com; xiuqi.li@uncp.edu; jiewu@temple.edu

Received May 16, 2010; revised May 12, 2011.

Abstract Semantic-based searching in peer-to-peer (P2P) networks has drawn significant attention recently. A number
of semantic searching schemes, such as GES proposed by Zhu Y et al., employ search models in Information Retrieval (IR).
All these IR-based schemes use one vector to summarize semantic contents of all documents on a single node. For example,
GES derives a node vector based on the IR model: VSM (Vector Space Model). A topology adaptation algorithm and a
search protocol are then designed according to the similarity between node vectors of different nodes. Although the single
semantic vector is suitable when the distribution of documents in each node is uniform, it may not be efficient when the
distribution is diverse. When there are many categories of documents at each node, the node vector representation may be
inaccurate. We extend the idea of GES and present a new class-based semantic searching scheme (CSS) specifically designed
for unstructured P2P networks with heterogeneous single-node document collection. It makes use of a state-of-the-art data
clustering algorithm, online spherical k-means clustering (OSKM), to cluster all documents on a node into several classes.
Each class can be viewed as a virtual node. Virtual nodes are connected through virtual links. As a result, the class vector
replaces the node vector and plays an important role in the class-based topology adaptation and search process. This makes
CSS very efficient. Our simulation using the IR benchmark TREC collection demonstrates that CSS outperforms GES in
terms of higher recall, higher precision, and lower search cost.

Keywords

1 Introduction

Peer-to-peer (P2P) networks can be classified into
three categories according to the control over data lo-
cation and network topology: highly structured, loosely
structured, and unstructured!*). Highly structured P2P
systems, such as CAN[?!| Pastryl3l, Chord¥, and their
extensionsl® %, have tight control over data location
and topology. They provide bounded data lookup ef-
ficiency and the guarantee in finding existing data.
They also support exact-match lookups well. How-
ever, they suffer from high overhead caused by fre-
quent node join/leave, known as “churn”. In addition,
these systems are not amenable to full-text semantic
search though some recent studies(”™ try to address
this issue. In loosely structured P2P systems, such
as Freenet['%) and Symphony!'!l, the overlay structure
and data locations are not precisely determined. The

class-based search, GES, semantic clustering, topology adaptation, P2P networks

overlay gradually evolves into some intended structure.
In unstructured P2P systems, such as Gnutellal'?!, both
the overlay and data locations are arbitrary. Therefore,
unstructured P2P systems provide better support for
complex queries like keyword/full text semantic search.
In this paper, we study unstructured P2P systems.
Searching techniques in unstructured P2P networks
are either blind or informed, as shown in Fig.1. Infor-
med searches utilize hints in forwarding queries while
blind ones forward queries without hints. Random
walk'3] iterative deepening™, and k-walker random
walk[’3l are blind. Routing indices!!”] and directed
BFS! are informed. Another taxonomy of searches in
unstructured P2Ps is semantic or non-semantic. Seman-
tic searches locate documents that have similar seman-
tic content. For example, documents about basketball
have similar semantic content. A non-semantic search
does not consider semantic information. For example,

Regular Paper

This work was supported in part by the National Science Foundation of USA under Grant Nos. ANI 0073736, EIA 0130806, CCR
0329741, CNS 0422762, CNS 0434533, CNS 0531410, CNS 0626240, CCF 0830289, and CNS 0948184.
(©2011 Springer Science + Business Media, LLC & Science Press, China

926
Searching in Unstructured P2P Networks
Blind Informed Semantic Non-Semantic

IR-Based Ontology-Based Misc

Fig.1. The classification of searching in unstructured P2P net-

works.

finding a file with ID 500 does not need any semantic
information.

Semantic searches can be further classified as IR-
based, ontology-based, and misc, as shown in Fig.1.
IR-based searches adapt classical models in Informa-
tion Retrieval (IR), such as VSM (vector space model)
or LSI (latent semantic indexing), to P2P networks. For
example, GES!'! utilizes the IR model VSM. Ontology-
based searches, such as SenPeer!'” try to apply on-
tology techniques in Semantic Web to P2P networks.
The other semantic searches are neither IR-based nor
ontology-based. They do not employ common tech-
niques. They are classified as misc (miscellaneous). For
example, the work in [18] adapts techniques in content-
based multimedia retrieval to P2P networks. Multime-
dia features such as color and texture are explored.

Ontology techniques are supposed to improve clas-
sical IR models. However, ontology-based searching
schemes introduce the new challenging issue of onto-
logy mapping. Different ontologies for the same domain
may exist in distributed systems due to different per-
spectives of people with different cultural background,
education, etc. Some schemes like [19] assume the same
ontology among all peers and do not consider ontology
mapping. Others like Klink+2° and SenPeer!” ad-
dress this issue with limitation. Klink+ requires ei-
ther manual or semi-automatic annotation. The semi-
automatic solution still relies on classical IR approach
TF/IDF. The mapping scheme in SenPeer employs the
appearance similarity between words. However, words
like “power” and “tower” may look similar, but do not
have similar meanings.

In this work, we investigate IR-based approaches and
full-text content search. In a full-text content search,
queries may be in the form of a sentence, a paragraph,
or even an entire document. The search techniques lo-
cate documents that have similar semantic content to
queries by looking inside the document texts. IR tech-
niques are designed for full-text content search. A num-
ber of IR-based approaches!'21726] have been proposed

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

for full-text content search in unstructured P2P net-
works. To the best of our knowledge, no existing IR-
based searches are designed specifically for the scenario
where documents on a single node are heterogeneous
and may be in different categories. For example, files
on a node may be in the music class, literature class,
and sports class. Such a node should be assigned to
multiple categories. However, all existing schemes use
one category vector to represent the heterogenous docu-
ment collection on a single node. This one-vector rep-
resentation is inaccurate.

In this paper, we present a distributed, dynamic,
and IR-based semantic searching scheme named CSS,
which is designed for unstructured P2P networks with
heterogeneous documents on a single node. It is an
extension of GESI'® a distributed IR-based semantic
search. GES summarizes all the documents on each
node into an average term vector (named node vector)
based on VSM. Its features include: 1) semantic clus-
ters (nodes are categorized into clusters according to
their node vectors), 2) semantic or random link (physi-
cal link which connects two nodes whose node vectors
are semantically relevant or irrelevant, respectively),
3) node-based topology adaptation algorithm, and 4)
node-based search protocol that combines biased walk
and flooding. The drawback of GES is that if there are
different categories of documents on a node, the node
vector representation is not accurate.

The goal of CSS is to make searching more efficient,
achieving higher recall at a lower search cost in the sce-
nario of heterogenous single-node document collection.
CSS extends GES by clustering all documents on a node
into different classes and using multiple class vectors to
represent document classes on a single node. CSS builds
virtual short links and virtual long links between docu-
ment classes on different nodes. These document classes
are virtual nodes on a physical node. The virtual nodes,
virtual long and short links form a virtual semantic
overlay on top of the original P2P overlay. The vir-
tual short and long links replace physical semantic and
random links in GES. With the above variation, we de-
velop a new class-based topology adaptation algorithm,
a fully class-based search protocol CSS(1) and a par-
tially class-based search protocol CSS(2). In addition,
we take advantage of an efficient and effective document
clustering algorithm, particularly the online spherical
k-means clustering (OSKM)?™, to cluster documents
on each node efficiently and precisely.

Our contributions in this paper are summarized as
follows:

e We design a new distributed and dynamic seman-
tic search specifically for heterogenous documents on a
single peer in unstructured P2P networks. To the best
of our knowledge, it is the first IR-based work targeted

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 927

at the scenario of heterogenous single-node document
collection. The new concepts of class vector, virtual
node, and virtual link are introduced. The new class-
based topology adaptation algorithm and search algo-
rithms are proposed. A good algorithm OSKM is ex-
ploited for effective and efficient document clustering.

o We extensively evaluate our search scheme using
the IR benchmark TREC collection. The experimental
results show that our scheme is more efficient than GES
in all cases. Both CSS(1) and CSS(2) are effective in
retrieving relevant documents.

The rest of the paper is organized as follows. We
survey related work in Section 2. The preliminaries
about VSM and GES are introduced in Section 3. We
describe the design of each component of CSS in Sec-
tion 4. Simulation results are presented in Section 5.
The paper is concluded and future work is discussed in
Section 6.

2 Related Work

Informed Search. An informed search, such as di-
rected BFSI' routing indices!™®, and local indices!™!,
achieves more efficiency than a blind search by hav-
ing each node forward a query to a subset of neighbors
based on previous query results or the summaries of
documents stored in neighbors. Similarly, in CSS nodes
replicate the information about the class vectors of each
neighbor and use this to direct walks. However, they
differ in the information kept for neighbors.

Most semantic searches are either for structured P2P
networks or for unstructured P2P networks. Some
hybrid systems[?873% combine structured and unstruc-
tured P2P networks. Semantic searches in unstructured
P2Ps are ontology-based, IR-based, or Misc (miscella-
neous).

Ontology-based Semantic Search. [19] describes
peers’ expertise using ontology and forwards queries
to peers whose expertises are closest to the query.
SenPeer!!? uses super-peers to maintain a distributed
expertise table, describing data at neighboring peers
using ontology. Queries are forwarded to relevant
peers based on the expertise table. Different ontolo-
gies are mapped based on linguistic and structural simi-
larity. Klink+[2%! defines ontologies at peer-level and
peer-group-level and provides sense-based search and
concept-based search. The ontology mapping SECCO
considers three different matchers: syntactic, lexical,
and contextual.

IR-based Semantic Search. Somel?>23 just
add semantic information into the P2P overlay.
Others!16:21:24-26] hyild a semantic overlay before the
search process. In the semantic overlay, nodes in the
same semantic group (cluster) are close to each other.

The major difference between CSS and existing IR-
based semantic searches is that existing schemes either
do not consider heterogeneous document collection on
a single nodel'6:22-26] o1 recognize this scenario but do
not accurately represent the single-node heterogeneous
document collection?!]. They all use one category vec-
tor instead of multiple vectors to represent all docu-
ments on a single node. Additional differences are in-
cluded below.

The work in [22] adds a hierarchical summary struc-
ture into the superpeer P2P overlay. Documents on
peers and superpeers are summarized using IR models
VSM and LSI. It requires that the underlying P2P ar-
chitecture is constructed with superpeers. It is a hierar-
chically centralized system in which a centralized index
is maintained at a server in superpeers, and all queries
are directed to it first. In contrast, our scheme CSS
is totally decentralized. Zhou et al.[?3! add a content-
based semantic relevance mechanism into the P2P over-
lay. The idea is to estimate the relevance of peers lo-
cally when receiving query messages. Only those peers
deemed as relevant will receive the forwarded query.
The similarity between the query model and the docu-
ment collection model is then measured. Our search
protocol is inspired from this method and then takes
a further step by directly calculating the similarity be-
tween the query vector and the class vector, which is
more accurate. CSS also differs from the work in [22-23]
in that CSS creates a semantic overlay.

The topology adaptation algorithm in CSS bears
similarity to SETS?! and GES['6:2%], SETS tries to
reorganize the network topology so that topic-related
peers are close to each other. However, in SETS, a sin-
gle designated node is responsible for clustering nodes
into semantic topic segments, which is actually not dis-
tributed. CSS extends the topology adaptation algo-
rithm of GES!*®!. They differ from each other as follows.
First, CSS uses class-based virtual links to assist the
topology adaptation algorithm whereas GES is node-
based. Second, CSS reduces two host caches (semantic
and random caches) in GES into one since there is no
corresponding concept of semantic and random links in
CSS. Finally, CSS uses a novel formula to calculate the
relevance score between nodes. The score is crucial to
our topology adaptation algorithm.

In [24], a small world semantic overlay is constructed
and maintained by using a gossiping mechanism. Each
peer periodically sends out a query containing its own
profile. When it receives an answer to its query, it will
analyze the answer to decide whether to add the can-
didate node to its neighborhood or not. In some cases,
neighbors may have to be replaced due to size cons-
traints. CSS is different from this work because CSS
uses random walk, not flooding, to build the semantic

928

overlay. The relevance calculation formula in CSS also
differs from that in [24]. SEIFI?6l employs the feedback
from past queries to form a semantic overlay and au-
tomatically expands the current query. It depends on
a query history of many similar queries. CSS does not
have this limitation. DSC[®Y is similar but independent
work. [32] is our preliminary study about CSS.

Misc Semantic Search. These schemes are nei-
ther topology-based nor IR-based. They use various
techniques to create a semantic overlay. The main dif-
ference between CSS and these approaches is that CSS
employs IR models. In [33], Ng et al. proposed a query
routing model called the firework query model on top
of the clustered P2P network. It clusters P2P networks
based on the characteristics of peer nodes and intro-
duces the notion of attractive and random links, which
resembles CSS. However, geographical information is
used to determine the similarity between peer nodes.
In [34], the semantic overlay network (SON) is built as
follows. First, the documents at each node are classi-
fied and a document hierarchy is spread throughout the
network. Second, the SON (clusters) is built according
to that document hierarchy. Finally, each new node
joins the SON in a Gnutella fashion (flooding) by find-
ing a proper cluster. This work!** studies searching for
music song files. Queries are manually classified. CSS
is concerned with text documents and does not need to
classify queries.

SocioNet!?9] is a semantic overlay based on users’ in-
terests in multimedia content. The overlay construction
integrates the idea of social network and the resulting
overlay exhibits small-world properties. Interests are
expressed as weights of a small number of keywords
such as genre values: rock, metal, pop, etc. It is not de-
signed for full-text content search while CSS is good for
both simple keyword search and full-text search. The
studies in [18] and Agoral®?l are designed for specialized
domains. [18] creates a metric space overlay for locat-
ing multimedia contents based on their features, such
as color and texture. Agoral®¢ builds a small-world
semantic overlay for distributed control and automa-
tion. Nodes in Agora represent entities like transform-
ers, generation plants, and central control rooms. CSS
is designed for content-based text document retrieval.

Gia. CSS is also related to Gial®7l, a non-semantic
search. Gia uses a topology adaptation algorithm to
balance the capacity of the network. We borrow the
idea of the three-way handshake protocol for node

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

join/leave from [37], and simplify it by removing the
satisfaction level.

Document Clustering. There are many docu-
ment clustering algorithms. They can be classified as
k-means, fuzzy c-means, hierarchical clustering, and a
mixture of Gaussian. K-means is an exclusive clus-
tering algorithm. Online spherical k-means cluster-
ing (OSKM)?" is an online version of the spherical k-
means algorithm based on the well-known winner-take-
all competitive learning. We choose it to cluster docu-
ments at each node because it achieves great clustering
results and its implementation is not too complex.

3 Preliminaries
3.1 VSM

The vector space model (VSM)P8! is a way of repre-
senting documents through the words (terms) that they
contain. It is a standard technique in information re-
trieval. In VSM, each document or query is represented
using a term frequency vector. In each vector, the terms
are stemmed with stop words (functional words like
“is”, “for”, “the”) removed. Suppose a collection in-
cludes two documents. The content of document 1 is
“The quick fox jumped over the lazy dog’s back”. The
content of document 2 is “Now is the time for all men to
run quickly”. Table 1 shows the VSM representation of
the collection. In general, a collection of n documents
(D1, Do, ..., D,) with t distinct terms (131,7s,...,T})
can be represented by a (sparse) matrix, in which w;;
means the weight of term ¢ in document j.

i AT B T; 7
Dy win wa - wp
Dy wiz wa - w2

L Dn Win Wan Wtn, |

In addition, each term is assigned a weight that re-
flects its importance in describing the document con-
tent. Among several term weighting schemes, the
“dampened” tf scheme weighs each term in the form
of 1+ log(tf) (¢f means term frequency). It does not
require global information, which fits well with the se-
mantic search in P2P networks.

There are many different ways to measure how simi-
lar two documents are, or how similar a document is

Table 1. An Example Showing VSM Representation

Indexed Term all back dog fox jump lazy men now over quick run time
Document 1 0 1 1 1 1 1 0 0 1 1 0 0
Document 2 1 0 0 0 0 0 1 1 0 1 1 1

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 929

to a query. The cosine measure is a very common
similarity measure. Given a normalized document vec-
tor D and a normalized query vector @, the relevance
score is calculated as:

REL(D,Q)= Y_ fipx frq (1)

teD,Q

In the above formula, ¢ is a common term occurring
in both D and Q. fi p is the weight of term ¢ in D and
ft,0 is the weight of term ¢ in Q.

3.2 GES Overview

GES[] is a distributed, content-based IR system
proposed by Zhu et al. There are four components in
GES that are also in CSS. However, they are different
in that CSS introduces the new concept of class vector
and makes all these components class-based. In ad-
dition, a query is routed through virtual links in the
search protocol CSS(1) rather than through physical
links in GES. The following is a brief summary of the
GES version of these components:

Node Vector and Physical Link. A node vec-
tor is a compact outline of all documents on a node,
which is indeed an average normalized term vector de-
rived from the term vectors of all documents on a node.
To judge whether two nodes or a node to a query are
relevant, the cosine similarity measure between node
vectors and the query vector is used. A physical link
is a link that connects two nodes in the P2P network.
Physical links can be further classified as semantic (rele-
vant) or random (non-relevant) links based on the rele-
vance score of the node vectors of the two adjacent
nodes.

Topology Adaptation Algorithm. The goal is to
organize relevant nodes into semantic groups through
semantic links. The algorithm is implemented in a dis-
tributed manner. Each node periodically issues two
random walk query messages that contain its node vec-
tor. One is for nodes whose node vectors are suffi-
ciently relevant to the node vector of the query source,
the other is for non-relevant nodes. These two kinds
of candidate nodes selected by the query are put into
the query source’s semantic and random host caches,
respectively. After that, each node periodically checks
these two caches for semantic or random neighbor ad-
dition/replacement based on the relevance score calcu-
lated from node vectors. When the number of neighbors
reaches the maximum limit, an existing neighbor has to
be dropped before a new neighbor can be added.

Selective One-hop Node Vector Replication.
Each node maintains the node vectors of its random
neighbors to assist the informed search process. The
node vectors of semantic neighbors are not replicated.

Search Protocol. GES uses a biased walk rather
than a random walk to forward a query through random
links. Each node looks up its local documents satisfying
the query. If at least one relevant document is found
on a node, this node is called a semantic group tar-
get node. This target node terminates the biased walk
and starts flooding the query along its semantic links.
If no relevant document is found, the node forwards
the query to the random neighbor whose node vector
is most relevant to the query vector. This two-stage
search protocol makes a query walk into a proper se-
mantic group and then retrieves many useful responses
within it. Besides, the book-keeping technique is also
used in GES to sidestep redundant paths.

4 Scheme Design
4.1 Overview

In CSS, each node contains several classes of docu-
ments and has corresponding class vectors as a sum-
mary of the semantic content on each node. Each class
may have two types of virtual links, short and long
links, which connect with similar and dissimilar classes
on its neighbor nodes, respectively. The topology adap-
tation algorithm reorganizes the network according to
the similarity of the contents on different nodes. We de-
sign two search protocols. The class-based search proto-
col CSS(1) first directs a query through long links, try-
ing to locate a class within a relevant semantic group.
Once such a relevant class is found, CSS(1) then floods
the query within that semantic group to retrieve more
relevant documents. The partially class-based search
protocol CSS(2) searches several selected classes instead
of all classes on a node at a time, which greatly reduces
message overhead.

4.2 Class Vector and Virtual Link

A class vector is a centroid vector of all documents
in a class. We calculate class vectors on a node based
on VSM, as follows. First, a term vector is derived to
represent a document, in which each term’s weight is
assigned by its term frequency in that document. Se-
cond, we re-weigh each term using the “dampened” tf
scheme in the form of 1+ log(tf). Third, we normalize
the weighed term vector to unit length. Fourth, we feed
all processed term vectors (corresponding to all docu-
ments on a node) to the OSKM?7 clustering algorithm.
Finally, given the number of classes you want to clus-
ter (e.g., 6), the algorithm outputs the given number of
normalized class vectors and a list showing which docu-
ment belongs to which class.

Given two classes of documents (class X and Y),
their relevance score is the cosine similarity of their

930

normalized class vectors, as listed below:

Z wtxxwty (2)

teX,Y

REL(X)Y)

In this formula, ¢ is a common term occurring in both
class vector X and class vector Y. wy x is the weight
of term ¢ in X, and w; y is the weight of term ¢ in Y. If
the relevance score is no less than a certain threshold,
these two classes are considered relevant. Otherwise,
they are not.

Sometimes we need to define the relevance between
a normalized class X and a normalized query Q. The
following formula applies:

REL(X,Q) = Y wix X wig (3)

teX,Q

In CSS, we build virtual links on top of physical
links. Physical links are the P2P overlay links that
connect peers. Virtual links connect two classes on dif-
ferent nodes. Formally, let E be the set of physical links
and E’ be the set of virtual links. Thus, CSS makes a
many-to-one mapping from E’ to E. It means that
many virtual links can be mapped to one underlying
physical link.

The goal of conceptual virtual links is to connect
classes of documents on different nodes virtually. If
the relevance score between two classes is no less than
short_rel_thres, we build a virtual link between them
and call it short link. If the relevance score between
two classes is no more than long_rel_thres, we build a
virtual link between them and call it long link.

Note that it is necessary for each document class on
a node to have at least one long link to each of its neigh-
bors because the directed walk in the search protocol
forwards queries through long links. If the relevance
scores of all virtual links coming from one class are
higher than long_rel_thres, we just pick the link with
the lowest score as the long link.

We do not classify physical links, as done in GES.
Instead, we classify virtual links as short and long links
in CSS. The short and long links can be considered
as the extension of semantic and random links in GES.
Note that we use two thresholds to classify virtual links
instead of the node_rel_threshold in GES. The reason is
that we do not want to build a virtual link between
classes with relevance scores that are not high or low
enough (e.g., 0.5). Using two thresholds yields better
classification.

Fig.2 shows an example of a physical link and three
virtual links. The relevance score between class 1 on
node X, whose content is about baseball, and class 1
on node Y, whose content is about football, is higher
than short_rel_thres, so a short link is built since these

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

two classes both belong to sports. On the contrary, the
relevance score between class 1 on node X and class 2
on node Y, whose content is about cooking, is lower
than long_rel_thres. So, a long link is built between
them because the two classes are not relevant. There
is no virtual link built between class 1 on node X and
class 3 on node Y because they have medium relevance.

baseball / football

Long Link

node Y

node X

Fig.2. Class vector and virtual link. (C’l,z means class 1 on node
X).

4.3 Topology Adaptation Algorithm

4.3.1 The Goal

The topology adaptation algorithm is an important
part of our search scheme. It aims not only to maintain
node connectivity, but also to achieve a refined network
topology for better search performance. Simply speak-
ing, it aims to find “good” neighbors for each node in
a distributed manner. The main goal of the topology
adaptation in GESI9 is to ensure that relevant nodes
are organized into semantic groups which may be rele-
vant to the same queries. Our topology adaptation al-
gorithm has to consider more factors since class vectors
on a node play an important role. Our goal is to ensure
that 1) relevant classes on different nodes are connected
through virtual similar links (namely short links), and
2) each class should have enough virtual dissimilar links
(namely long links) in order to discover proper virtual
semantic groups.

4.3.2 Calculating Overall_Score

Short links and long links are both valuable because
during the search process, a query is flooded through
short links and directedly routed through long links.
The simulation result shows that they both affect the
performance greatly. Therefore, we need a criteria to
judge whether a node is a good candidate to be a neigh-
bor or not. A formula is designed to calculate the over-
all_score between two nodes. We name it overall_score
since it considers both relevance factor (short links) and

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 931

non-relevance factor (long links). Given two nodes, the
overall_score is defined as follows:

1) Find all short and long links by calculating the
relevance scores between all class vectors of the two
nodes using (2). The relevance scores of a short link
and a long link are denoted by rel_score_short and
rel_score_long, respectively.

2) Define a medium value.

rel_med = (short_rel_thres + long_rel_thres)/2 (4)

3) Sum up the differences between rel_score_short
and rel_med for all short links. Similarly, the differences
between rel_med and rel_score_long for all long links are
summed up.

sum_diff _short =
Z (rel_score_short — rel_med), (5)

all short links
sum_diff _long =

Z (rel_med — rel_score_long). (6)

all long links

4) Add a weight factor w.

overall_score =
sum_diff _long + w - sum_diff _short. (7)

4.3.3 Topology Query Process

When a node joins the network, it first randomly
connects to other nodes using a bootstrapping mecha-
nism, as in Gnutella. At this time, it is not aware of
any content (e.g., class vectors) of other nodes and its
classes do not belong to any virtual semantic group.
This node then periodically issues a topology query
message for such information. The query is routed
throughout the network using random walk bounded by
a TTL (time to live) until sufficient responses are ob-
tained. This kind of query is different from the search
query. We name it probe query.

A probe query message contains all class vectors of
the node, the maximum number of responses, and the
TTL. The query returns some qualified nodes ranked in
decreasing order of overall_score, which will be added
to the query initiator’s host cache. Each entry in the
host cache consists of a node’s IP address, node degree,
class vectors, and overall_score. The cache is continu-
ously updated during the lifetime of a node using the
candidates discovered by the periodic topology query
process. Fig.3 illustrates the topology query process
and the corresponding list of host cache entries. The
topology query starts with node 1. It randomly walks
to node 6, then 22, and etc. Finally it ends with node

15. This query finds five candidate nodes: 22, 2, 8, 4,
and 19.

host cache entries
22.2,8,4,19

Fig.3. Topology query process.

4.3.4 Topology Modification Process

With candidate nodes stored in host cache, each
node periodically performs neighbor addition and re-
placement in a similar way to Gial?”). After a neighbor
is added, short and long links for that neighbor will be
established immediately. Similarly, before a neighbor is
dropped, all short and long links associated with that
neighbor have to be removed. A node, say X, chooses a
candidate node with the highest overall_score from its
host cache and verifies that the candidate is still active
and not an existing neighbor. X then uses a three-way
handshake protocol to communicate with the selected
neighbor candidate, say Y. It is a distributed hand-
shake protocol, which means that each node decides
independently whether to accept the other node as a
new neighbor or not. These nodes make a decision ac-
cording to their own maxz_links (the maximum number
of neighbors allowed), current degree, and overall_score
of the requesting node.

If the current degree is less than max_links, the node
automatically accepts the requester as a new neighbor.
Otherwise, the node has to check whether it can find a
suitable existing neighbor to drop and replace it with
the requesting node. X makes such a decision in the
following manner. From all of X’s neighbors that are
not poorly connected and whose overall_scores are lower
than that of Y, X chooses the neighbor Z with the low-
est overall_score to drop and adds Y as its new neigh-
bor. A poorly connected node is a node whose degree is
less than or equal to the minimum number of neighbors
required, namely min_links.

Fig.4 illustrates the topology modification process at
node 1. Node 4 is the candidate node in the host cache

932

with the highest overall_score. The maximum number
of neighbors allowed is 6. Because this maximum is
reached, node 1 has to drop existing neighbor 9 in fa-
vor of new neighbor 4.

host cache entries
22,2,8,4,19
Fig.4. Topology modification process at node 1.

4.3.5 Handling Dynamics

Changes in the document collection may invalidate
existing class vectors and neighbors. Each node periodi-
cally detects whether the contents of its neighbors have
changed and keeps updating the overall_score of all of
its neighbors. If many documents on a neighbor have
been added, removed, or changed, then the cluster-
ing algorithm is run again on that neighbor and the
class vectors are updated. Each node discovers these
changes, obtains updated class vectors from its neigh-
bors, recalculates the overall_scores, and updates its
neighbors when necessary. If the overall_score of an
existing neighbor is too low (e.g., lower than a certain
threshold), in order to keep all short and long links in-
tact we do not simply drop that neighbor immediately.
Instead, we wait for a good candidate node to replace
that neighbor during periodic topology adaptation.

To reduce the maintenance overhead of the topology
adaptation, changed class vectors because of document
addition/deletion/update are not sent in its original for-
mat. Instead, the vector differences are delivered. In
addition, the periodic keep-alive messages can carry the
vector differences to further reduce the overhead. Com-
pression techniques may also be applied to the vector
deltas.

Node leaves or node failures may also make existing
neighbors invalid. When a node leaves the network, it
notifies its neighbors about this change. Each neighbor
removes this node, adds a new one from the host cache,
and creates new short and long links. A failed node is
detected by its neighbors through keep-alive messages.

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

The neighbors of the failed node remove this node, add
a new one from their own host cache, and create new
short and long links. Node addition in this scenario fol-
lows the same rule as in Subsection 4.3.4. In summary,
our topology adaptation algorithm can fit a dynamic
situation well.

4.4 Selective One-hop Class Vector
Replication

Each node should store information about the class
vectors of all its neighbors in order to assist the search
process. We only store class vectors of the classes con-
nected via long links. That is why we call it selec-
tive replication. During the search process in CSS(1),
queries are routed through one of the long links (need to
compare and select one) and flooded through all short
links (no need to compare and select). Thus, we need
to replicate information about long links for selection
purposes. If a neighbor leaves the network, then the in-
formation about its class vectors will be deleted. If the
documents on a node’s neighbors have been changed,
it will receive the updated class vectors and then re-
calculate the overall_score. In CSS(2), each node does
not need to store class vectors of its neighbors. Instead,
each node should continue to update and guarantee that
the overall_score is the latest. In summary, our replica-
tion algorithm can handle dynamic situations, such as
node join/leave or the change of documents on neighbor
nodes.

4.5 Search Protocol

The topology adaptation algorithm refines the net-
work topology, and selective one-hop class vector repli-
cation informs each node of the class vectors of its
neighbors. In this subsection, we discuss two content-
based search protocols. One protocol, named CSS(1),
is totally class-based and virtual link assisted. It means
that queries are routed from one class to another along
virtual links. The other protocol, called CSS(2), is
partially class-based or node-based, which means that
queries are routed from one node to another. CSS(2)
can also be considered a variant of CSS(1).

4.5.1 Search Protocol CSS(1)

A query is in two separate modes during the search
process: first in directed walk mode (walk with each
hop selected intelligently) and then flooding mode. The
goal of the directed walk is to locate a class within a
semantic group that is relevant to the query. This rele-
vant class contains the first relevant document. In this
mode, queries are forwarded along long links because
a relevant document may not be on the query source

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 933

or the node receiving the query. Long links connect ir-
relevant document classes. After the class containing
the first relevant document is found, the query is set to
be in flooding mode. The goal of this mode is to find
more relevant documents. The relevant class discovered
in the direct walk mode starts the flooding of queries
along short links. This mode uses short links because a
relevant class is found and short links connect relevant
classes.

When a node initiates a query, it first calculates and
compares the relevance scores between the query vector
and all its class vectors. The query is then routed to
the class with the highest relevance score. This class is
called the query source class.

After the query source class is found, the query is set
to be in directed walk mode. When receiving a query in
this mode, each class looks up its locally stored docu-
ments for those satisfying the query. A relevance score
is calculated between the query and each document us-
ing (1). If it is higher than a certain threshold, this
document is identified as a relevant document for the
query. If at least one relevant document is found, then
this class (say A) of the node (say X) is called a virtual
semantic group target class, or target class in short. At
this time, the query ends directed walk mode and enters
flooding mode. If all documents in class A are identi-
fied as non-relevant, class A selects another class (say
B) whose class vector is most relevant to the query vec-
tor according to (3) from all other classes on the same
node X and classes connected via X’s long links.

#
Physical
Link on
S biased
Short Link forwarding
...... L. Op
LongLink p5de 7 node X node y flooding

Fig.5. Query routing graph for CSS(1). (C1,, means class 1 on
node X).

Fig.5 illustrates how node X intelligently chooses a
class to forward the query given the set of virtual links
in Fig.3. The query Q4 begins with the class Cy , of
node X and no documents in C5 , are relevant to the
query. So, class Cs, tries to find the most suitable
class to biasedly forward the query. Its choices include
all other classes on the same node X (C1 4, Cs4, Ca)
and classes connected via X’s long links (Cyy, Co 2,
Cy.). Class Ca ; finally chooses Cy y since its class vec-
tor is most relevant to the query vector. The directed
walk continues similarly until a target class is found.

The target class then sets the query to be in flood-
ing mode and floods the query along all its short
links. Each semantically-related class receiving the
query looks up all documents in the class and floods
the query along its own short links. Fig.5 shows that if
(5, is the target class for the query @p, it will flood
Q@ p along its short links to the classes C,,, Cs,, and
C1,.. In addition, the radius of flooding is controlled via
TTL. The relevant documents found within the seman-
tic class group are reported to the target class directly.
The target class is responsible for aggregating all these
files and reporting them directly to the query source.
If the number of relevant documents discovered so far
is below the user expectation, as specified in the origi-
nal query, the target class starts another directed walk
and the above search process is repeated. CSS(1) is
illustrated in Algorithm 1.

Algorithm 1. CSS(1)
1: A query reaches the source node X
2: /*Initialization*/
3: the query is located in the identified query source
class
set query_mode «— directed walk
5: while insufficient responses and TTL bound not
reached do
6: if query_mode = directed walk then
look up relevant documents in the current
class

if one relevant document found then

9: mark current class: a target class

10: set query_mode «+ flooding

11: else

12: define set C' < {all other classes in the same

node X} U {classes connected via node X’s

long links}

13 forward the query to the class in set C' which
is most relevant to the query

14: end if

15: end if

16: if query_mode = flooding then

17: flood the query along all short links

18: if no short link found or beyond flood radius
then

19: set query_mode «— directed walk

20: end if

21: end if

22: end while

23: return

We also use TTL to bound the duration of the

934

directed walk and the book-keeping technique to avoid
redundant paths. In CSS(1), each query is assigned
a unique GUID by its originator class. Each class re-
members the classes to which it has already forwarded
queries for a given GUID. If a query with the same
GUID comes back to the class, it will be forwarded
to a different class with the highest relevance score
in directed walk mode, or it will simply be discarded
in flooding mode. However, to guarantee forwarding
progress, if a class has already sent the query to all
possible classes, it flushes the book-keeping state and
starts reusing classes for directed walk.

In summary, the directed walk guides the query
along long links towards a target class with similar
semantic content. Flooding uses short links to lo-
cate enough desired documents near the target class.
Our totally class-based search protocol CSS(1) makes
searching efficient by using a smaller search unit: a class
of documents on a node instead of all documents on a
node.

4.5.2 Search Protocol CSS(2)

We describe our second search protocol CSS(2) as
follows. A query is always in directed walk mode (walk
with each hop selected intelligently) during the search
process. When a node initiates a query, it first searches
its own contents and then routes the query to one of its
neighbors. The query usually searches several classes
on a node at a time so it visits each node only once
during the whole search process.

After the query source finishes checking its local files,
the query is routed to one of its neighbors with the high-
est overall_score. On receiving the query, the neighbor
calculates the relevance scores between the query vector
and all of its class vectors. The classes whose relevance
scores are higher than a certain threshold are selected
and searched one by one. A relevance score is calculated
between the query and each document in a chosen class
using (1). If the score is higher than a certain threshold,
this document is considered to be relevant to the query
and is included in the result set for the query. All rele-
vant documents found within the selected classes are
directly reported to the query source. When the num-
ber of relevant documents discovered so far meets the
requirement, the entire search stops.

Fig.6 illustrates how node X conducts the search and
intelligently chooses a neighbor to forward the query.
When a query reaches node X, it calculates the rele-
vance scores between its query vector and all class
vectors (C14, Ca4, Cs4 and Cy,) on node X. The
classes Cy , and Cs, are chosen since their relevance
scores are higher than a preset threshold. After search-
ing classes Cy , and Cs g, the query is routed to node

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

Y whose overall_score is the highest among node X'’s
neighbors. We then look up the selected classes C' ,
and Cs, on node Y. The search process continues un-
til there are sufficient responses or the TTL expires.
CSS(2) is illustrated in Algorithm 2.

node Y (the neighbor with
the highest overall score)

Fig.6. Query routing graph for CSS(2). (C1,, means class 1 on
node X).

Algorithm 2. CSS(2)

1: A query @ reaches the node X
2: /* Initialization */
3: define set C « null
4: define T' + a preset threshold
5: set query_mode «— directed walk
6: while insufficient responses and TTL bound not
reached do
T calculate the relevance scores between the query
vector and all of node X’s class vectors
8: for each node X’s class ¢ do
if (the relevance score between query @ and
class ¢) > T then
10: set C' « set C'U class 1
11: endif
12: endfor
13: for each class j in set C' do
14: look up relevant documents in class j
15: end for
16: report all relevant documents directly to the query
initiator node
17: forward the query to the neighbor of X with

highest overall_score
18: end while

19: return

The book-keeping technique is also used in CSS(2)
to avoid redundant paths. The technique differs from
that in CSS(1) because in CSS(2) each node is respon-
sible for remembering the visited neighbors, whereas
in CSS(1) each class (like a virtual node) does its own

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 935

book-keeping.

In summary, in CSS(2), given a query, some selected
classes on a node are looked up and the query is biasedly
forwarded in favor of nodes with higher overall_scores.
Our partially class-based search protocol CSS(2) makes
searching efficient by clustering documents into classes
and by routing queries with reduced message overhead.

4.5.3 Comparison of CSS(1) and CSS(2)

We design two search protocols CSS(1) and CSS(2).
They both take advantage of clustering documents into
classes, but are different in essence. CSS(1) is to-
tally class-based while CSS(2) is partially class-based or
node-based. During the search process, CSS(1) routes a
query from one class to another via virtual links. There-
fore, it is possible that a query visits different classes
on the same node at different times, which results in
high message overhead. CSS(2) is designed to search
all qualified classes at a time so that a query only visits
a node once, thereby lowering message overhead. The
maximum recall for a search using CSS(1) is 100% since
a query visits all classes, e.g., all documents in the net-
work. However, the maximum recall for a search using
CSS(2) is only around 80%. This is because a query
only visits qualified classes that are similar enough to
the query instead of all classes in the network. Table 2
summarizes the comparison.

Table 2. Comparison of Search Protocols CSS(1) and CSS(2)

CSS(1) CSS(2)

Class-based

A query may visit

Node-based
A query only

Search Characteristics
Node Visiting

a node multiple visits a node

times once
Message Overhead High Low
Maximum Recall 100% Around 80%

5 Simulation

In this section, we present the results of our class-
based search scheme (CSS). We first discuss text
datasets used in the simulation and then explain per-
formance metrics. After that, simulation settings are
described. Finally, CSS is evaluated in different net-
work configurations and document distributions.

5.1 Text Datasets

We use all documents of AP newswire 1988 along
with Topics 151~200 in TREC disks 1&2 to evaluate
our search scheme. They can be found in TREC’s
ad hoc test collections!®®. The goal of TREC is to
provide a benchmark for evaluation in information re-
trieval from large text collections. We then extract the

text field from these documents by removing irrelevant
parts. Rainbow!%, a powerful toolkit used to prepro-
cess raw text files for further classification and cluster-
ing, is then used to calculate the term frequencies for all
terms (words) in these documents. Rainbow is also able
to perform a stemming process with the aid of Porter
stemmer. Finally, there are 79986 files distributed over
1000 nodes. The queries we use are from TREC topics
151~200. The query vectors are obtained from the text
field of these topics using Rainbow. Thus, each query
is not a keyword-based search, but rather a text-based
search. The query vectors are also stemmed with stop
words removed. In addition, the TREC websitel®?! pro-
vides relevance judgement files that can be viewed as
“correct answers” for the above 50 queries. These as-
sessment files are obtained by manual identification and
are vital to our simulation.

5.2 Performance Metrics

The following performance metrics are used in the
simulation.

1) Recall. Tt measures the coverage of available rele-
vant results. It is defined as the number of relevant
documents retrieved divided by the total number of
relevant documents in the system.

2) Precision. It is defined as the number of truly rele-
vant documents divided by the total number of docu-
ments retrieved.

3) Search Cost. Tt is defined as the percentage of
classes in the network visited by a query. An efficient
search algorithm incurs a low search cost. The less
classes a query visits, the shorter the search response
time, and the less the computing resource consumption,
especially when there are a huge number of documents
in the network.

5.3 Comparison Criteria

As described in the search protocol section, CSS(1)
is a class-based search protocol while GES and CSS(2)
are node-based. This means that CSS(1) routes a query
from one class to another while GES and CSS(2) route
a query between nodes. Therefore, how can we com-
pare the performance of CSS(1) and GES/CSS(2) using
the same criteria? First, we globally cluster all docu-
ments in the text datasets into twenty classes by using
OSKM7]. Second, a tunable parameter, c¢pn is defined
to reflect different document distribution. cpn is the
abbreviation of classpernode, which is the number of
classes placed at each node. If cpn equals 5, there are
five classes of documents per node, which means that
we randomly pick up some documents from five classes
of the above twenty global classes and assign them to
nodes. Third, the metric we use is percentage of classes

936

visited. There is no problem with class-based CSS(1).
As for GES, we turn to the conversion that the number
of classes visited equals the product of the number of
nodes visited and ¢pn. As for CSS(2), the number of
classes visited is the total number of classes that are
actually selected for the query to search. As a result,
the same metric is applicable to all search protocols.

5.4 Simulation Setting

We use a custom simulator to test our search scheme.
Table 3 lists the simulation parameters and their va-
lues. A random graph with an average degree of
6 is generated first as the initial topology, then the
topology adaptation algorithm is run for several rounds
to reorganize the initial topology. The search pro-
cess is then performed on the refined topology. In our
search scheme (CSS), there are two fixed parameters
(min_links and maz_links) and five tunable parameters
(classpernode or cpn, short_rel_thres, long_rel_thres, w,
good_neigh_thres). We set min_links = 3 and max_links
= 10, which are the min. and max. limits for node
degree. The tunable parameter cpn is set from 1 to 10.
short_rel_thres and long_rel_thres represent two thres-
holds to define short and long links, respectively. We
set their values to 0.7 and 0.3, respectively. The weight
factor w (w = 3) is used to strengthen the effect of short
links when calculating overall_score because the num-
ber of short links is much less than that of long links.
We use 3.0 as the value of the last tunable parameter
good_neigh_thres, which is the criterion for “good” can-
didate nodes to be put into the cache in the probe query
process.

Table 3. Simulation Parameter Setting

Parameter Value
min_links 3
max_links 10
short_rel_thres 0.7
long_rel_thres 0.3
cpn 1 to 10
w 3
good_neigh_thres 3.0

All values of the above tunable parameters are ob-
tained from experiments. So, they are heuristic values.
However, there are some rules as to why we choose these
particular values. We set the value of short_rel_thres
larger so that each short link is built between two
classes that are very relevant. This makes flooding
short links very effective in finding highly relevant docu-
ments. As for the value of long_rel_thres, if it is too
small, then there are too few long links for a query to
find a class relevant enough to route itself to. If it is
too large, then there will be too many long links for

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

directing a query, which consumes more resources and
causes a longer delay. Finally, if the host cache is large,
we can set good_neigh_thres smaller so that more candi-
date nodes can be considered.

5.5 Simulation Results

We compare the performance of our search scheme
(CSS), including CSS(1) and CSS(2), with GES in
different document distributions and different network
configurations. We also discuss the maintenance over-
head of CSS and GES.

5.5.1 Number of Classes per Node

Fig.7 shows the performance with different values of
classpernode (cpn) ranging from 1 to 10. Four typical
graphs with c¢pn = 1, 4, 7, 10 are illustrated. Some
observations are as follows:

1) CSS(1) is the best, CSS(2) is the second, and
GES is the worst when the parameter cpn varies. If
cpn equals 1, then CSS(1) is reduced to GES and they
behave in the same way. Thus, the search results with
cpn = 1 are identical, as shown in Fig.7(a). However, in
Figs. 7(b)~7(d), both CSS(1) and CSS(2) outperform
GES by achieving higher recall at the same search cost.
This can be explained as follows. Since a query is routed
through classes in CSS(1), or it selects part of all classes
to search in CSS(2), it can locate the target class more
precisely and quickly without visiting many irrelevant
documents. We also see that CSS(1) performs better
than CSS(2). The reason is that though both CSS(1)
and CSS(2) only search part of all documents on a node,
they behave in a different way. CSS(2) searches several
classes at a time while CSS(1) searches one class at a
time. This means that CSS(1) uses a smaller search
unit so that it achieves higher recall when visiting the
same number of classes.

2) The trend from Figs.7(b)~7(d) indicates that
both CSS(1) and CSS(2) perform better than GES
when the number of classes at each node increases. This
is because the advantage of clustering documents into
classes will be more obvious as the number of classes in-
creases. The more classes on a node, the more choices
for a query to investigate and the higher precision the
search has. We demonstrate that both CSS(1) and
CSS(2) outperform GES in different document distri-
butions. CSS(1) achieves better search efficiency than
CSS(2) with the cost of higher message overhead. As
the number of classes at each node increases, the gap
between CSS(1) and CSS(2) becomes larger.

5.5.2 Network Configuration

Node Degree. Figs. 8(a)~8(b) compare the perfor-
mance with different initial node degrees (deg = 3, 6,

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 937

1.0 £

0.9

0.8

0.7

0.6

Recall

0.5

0.4 = CSS(1)
A -
03 GES

10 20 30 40 50 60 70 80 90 100
Classes Visited (%)

Recall

= CSS(1)
K 5 CSS(2) |
. A GES

10 20 30 40 50 60 70 80 90 100
Classes Visited (%)
(©

1.0
09
0.8
0.7
0.6
05
0.4
033 ’ & CSS(1)

0.2 /A - CSS(2)
& -A- GES
10 20 30 40 50 60 70 80 90 100

Classes Visited (%)

(b)

Recall

0.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
03 /7 A
02Y .-

Recall

= CSS(1)
- CSS(2)
P A GES

10 20 30 40 50 60 70 80 90 100
Classes Visited (%)
(d)

Fig.7. CSS vs GES with different numbers of classes per node (nodenum = 1000, deg = 6). (a) Number of classes per node = 1. (b)

Number of classes per node = 4. (c) Number of classes per node = 7. (d) Number of classes per node = 10.

9). We can see that CSS(1) is still the best and CSS(2)
beats GES. However, the difference between the group
of curves of each protocol is very small. This is because
the topology adaptation algorithm plays a significant
role in addition and replacement of neighbors so that
initial node degree seems less important.

Network Size. Figs.8(c)~8(d) compare the per-
formance with different number of nodes in the net-
work (nodenum = 500, 1000, 2000). Both CSS(1)
and CSS(2) exceed GES. CSS(1) outperforms CSS(2)
in most cases. Also, the difference between the group
of curves of each protocol is relatively larger than that
in Figs. 8(a)~8(b). This is because the number of nodes
in the network has a direct impact on topology adap-
tation and search process. CSS proves to be applicable
to P2P networks of different sizes.

Network Type. Figs.9(a)~9(c) compare the per-
formance of CSS(1) and GES in different types of net-
works: random graph, power-law graph, and square-
root graph. The number of classes per node is 7.
CSS(1) performs better than GES in all three types

of networks. The performance trends are similar in
the three network types. Figs.10(a)~10(c) compare
CSS(2) to GES in the same network scenario. CSS(2)
also has a better performance than GES in all three
network types. The network type does not make a dif-
ference in the performance of CSS(1) against CSS(2).
CSS(1) still does better than CSS(2) in the three types
of networks, as shown in Figs. 11(a)~11(c).

5.5.3 Precision-vs-Recall

Precision vs recall is a standard measure in informa-
tion retrieval. Fig.12 presents a graph of precision vs
recall. We can observe that the precision of CSS(1) or
CSS(2) is higher than that of GES in the same recall,
which means both CSS(1) and CSS(2) are more precise
in the search process due to their class-based search
characteristics. CSS(1) wins over CSS(2) with respect
to search precision since it uses a smaller search unit.
However, the highest precision is around 32%, which
seems low. This is because the truly relevant docu-
ments for a query in the relevance judgement file are

938

Recall

-5 CSS(1)-deg-6
—% CSS(2)-deg-6
—+- CSS(1)-deg-3
02 - CSS(2)-deg-3
- CSS(1)-deg-9
% CSS(2)-deg-9

10 20 30 40 50 60 70 80 90 100
Classes Visited (%)

(a)

1.0 |
0.9
0.8
0.7
0.6

= 05

s 0.4

e O -5~ CSS(1)-Nodenum-1000
03 %/, = CSS(2)-Nodenum-1000

—+- CSS(1)-Nodenum-500

024 -&- CSS(2)-Nodenum-500
0.1 - CSS(1)-Nodenum-2000
00 - CSS(2)-Nodenum-2000

10 20 30 40 50 60 70 80 90 100
Classes Visited (%)
(©

Recall

Recall

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6
1.0
0.9
0.8
0.7
0.6
0.5
04 —% CSS(2)-deg-6
0.3 -©- GES-deg-6

- CSS(2)-deg-3
0.2 -A- GES-deg-3
018 #- CSS(2)-deg-9
00 - GES-deg-9
10 20 30 40 50 60 70 80 90 100
Classes Visited (%)
(b)
1.0 9
0.9 I T
038 4 2
0.7 y
0.6 & R
OVS //// //v//
Il A % CSS(2)-Nodenum-1000
03 %/ N .7 -©- GES-Nodenum-1000
£ - CSS(2)-Nodenum-500
028 - -A- GES-Nodenum-500
o1 K +# CSS(2)-Nodenum-2000
V- GES-Nodenum-2000
0.0
10 20 30 40 50 60 70 80 90 100
Classes Visited (%)
(@)

Fig.8. CSS vs GES with different network configurations. (a) CSS(1) vs CSS(2) with different node degrees (cpn = 5, nodenum =
1000). (b) CSS(2) vs GES with different node degrees (cpn = 5, nodenum = 1000). (c) CSS(1) vs CSS(2) with different node numbers
in the network (cpn = 5, deg = 6). (d) CSS(2) vs GES with different node numbers in the network (cpn = 5, deg = 6).

= 1.0 5 =
0.9 0.9
0.8
0.7 0.7
% E 0.6 %
5 & 3 0.5
v 0.5 04 20
0.3 02 0.3
b = CSS (1)) = CSS (1) = CSS (1)
0.1 & GES 0.0 -& GES 0.14 & GES
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Classes Visited (%) Classes Visited (%) Classes Visited (%)
(a) (b) (c)

Fig.9. CSS(1) vs GES with different network types with cpn = 7. (a) Random graph. (b) Power law graph. (c) Square root graph.

only around one-thousandth of the whole document col-
lection (text datasets). Besides, we aim to conduct a
full search to find all truly relevant documents since
there are not many. This is why we cannot set a high
threshold for document retrieval.

5.5.4 Topology Adaptation Overhead

In CSS, each node sends periodic probe queries,
looking for good candidate neighbors with high over-
all scores. Each probe query carries the class vectors

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 939

1.0 . 1.0 . 1.0

A
0.8 * 0.8 A 0.8
= 06 = 06 = 06
0.4 04 “ 04
0.2 0.2, , 0.2

h & CSS (2)) = CSS (2)) -5 CSS (2)
0.0 -4 GES 0.0 4 GES 0.0 -4 GES
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Classes Visited (%) Classes Visited (%) Classes Visited (%)
(a) (b) ©

Fig.10. CSS(2) vs GES with different network types with cpn = 7. (a) Random graph. (b) Power law graph. (c) Square root graph.

1.0 1.0 . 1.0
0.8 0.8 0.8
= 06 = 06 = 06
2 2 2
“ 04 % 04 * 04
0.2 0.24
023 = CSS (2) : = CSS (2) & CSS (2)
0.0 4 GES 0.0 4 GES 0.0 4 GES
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Classes Visited (%) Classes Visited (%) Classes Visited (%)
(a) (® ©

Fig.11. CSS(1) vs CSS(2) with different network types with cpn = 7. (a) Random graph. (b) Power law graph. (c) Square root graph.

50
45
40
35
30

= ¢ss()
- CSS(2)
-A- GES

Precision (%)

0 20 40 60

Recall (%)

Fig.12. Precision vs recall (cpn = 5, nodenum = 1000, deg = 6).

of the node initiating the query. The response message
to a probe query includes only overall scores of candi-
date nodes. Class vectors of a candidate are delivered
to a node only when the candidate is chosen as a new
neighbor by this node. In GES, each node periodically
sends two probe query messages. One searches for po-
tential good candidates as random link neighbors, and
the other for good candidates as semantic link neigh-
bors. Each probe query carries the node vector of the
node issuing the query. Each response message contains

only the relevance score of a candidate. A node pulls
the node vectors of candidates in its host caches only
when it chooses a candidate as a new neighbor. Both
CSS and GES forward probe query messages using ran-
dom walk with bounded TTL. The two probe queries
in GES can be considered as an equivalent of one probe
query, carrying two node vectors.

In CSS, each node also periodically informs its neigh-
bors about updates in its class vectors. Each vector-
update message carries the vector differences of changed
class vectors. In GES, each node sends periodic mes-
sages, notifying its neighbors about the changes in its
node vectors. Each vector-update message includes the
vector differences of changed node vectors.

Assuming the same probe period, then the topology
adaptation in CSS incurs the same number of overhead
messages as the topology adaptation in GES. The dif-
ference is in the message sizes, mainly caused by the
number of vectors carried within the message. In CSS
each probe message contains multiple class vectors. In
GES each probe message carries equivalently two node
vectors. In CSS, each vector-update message transports
multiple vector deltas while in GES, only one delta per
vector-update message is transported. Assuming the
same document collection on the same network, node

940

vectors and class vectors have the same sizes. In the
work for GES[16:25] experiments show that vector sizes
of 20 and 50 offer an acceptable performance. There-
fore the overhead increase in CSS will not be much
more than that in GES. Furthermore, compression tech-
niques can be employed to reduce the overhead. The
keep-alive messages can also piggyback vector-update
information.

6 Conclusion

In this paper, we extended GES and presented
a class-based semantic searching scheme (CSS) in
Gnutella-like unstructured P2P systems. CSS exploits
a state-of-the-art data clustering algorithm and makes
each component class-based. We also designed two dif-
ferent search protocols: CSS(1) and CSS(2). CSS(1) is
totally class-based while CSS(2) is partially class-based.
The simulation shows that both CSS(1) and CSS(2)
are more efficient than GES in all cases. Compared
with CSS(2), CSS(1) achieves higher recall and preci-
sion with larger message overhead. In summary, CSS
is more suitable when the documents on each node are
heterogeneous while GES is applicable when the docu-
ments are uniform. CSS(1) and CSS(2) have comple-
mentary merits. In the future, we will conduct more
simulations using larger datasets and different metrics,
such as precision@10. We will also conduct extensive
simulations that evaluate the topology adaptation over-
head of CSS algorithms against other similar schemes
such as GES.

References

[1] Li X, Wu J. Searching techniques in peer-to-peer networks.
Handbook of Theoretical and Algorithmic Aspects of Sensor,
Ad Hoc Wireless, and Peer-to-Peer Networks, CRC Press,
2005, http://www.kiv.zcn.lz/~ledvina/DHT /p2psurvey.pdf.
Ratnasamy S, Francis P, Handley M, Karp R, Shenker S. A
scalable content addressable network. In Proc. the 2003
Conf. Applications, Technologies, Architecture, and Proto-
cols for Computer Commaunications (SIGCOMM 2001), San
Diego, USA, August 27-31, 2001, pp.161-172.

Rowstron A, Druschel P. Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems.

In Proc. the 18th IFIP/ACM International Conference on

Distributed System Platforms (Middleware 2001), Heidelberg,

Germany, November 12-16, 2001, pp.329-350.

Stoica I, Morris R, Nowell D L, Karger D, Kaashoek M, Dabek

F, Balakrishnan H. Chord: A scalable peer-to-peer lookup

protocol for internet applications. IEEE/ACM Transactions

on Networking, 2003, 11(1): 17-32.

[5] Yu D, Chen X, Chang Y. An improved P2P model based on
Chord. In Proc. the 6th International Conference on Paral-
lel and Distributed Computing Applications and Technologies
(PDCAT 2005), Dalian, China, December 5-8, 2005, pp.807-
811.

[6] Xue K, Hongk P, Li J. FS-chord: A new P2P model with frac-
tional steps joining. In Proc. Advanced International Con-
ference on Telecommunications and International Conference

[2

3

[4

J. Comput. Sci. & Technol., Nov. 2011, Vol.26, No.6

on Internet and Web Applications and Services (AICT-ICIW
2006), Guadeloupe, French Caribbean, February 19-25, 2006.

[7] Cai J, Shao X, Ma W. Ontology driven semantic search over

structured P2P network. In Proc. the 9th International Con-

ference on Hybrid Intelligent Systems (HIS 2009), Shenyang,

China, August 12-14, 2009, pp.29-34.

Dragan F, Gardarin G, Yeh L. A semantic layer for publish-

ing and localizing XML data for a P2P XQuery mediator. In

Proc. the 17th International World Wide Web Conference

(WWW 2008), Beijing, China, April 21-25, 2008, pp.1105-

1106.

[9] Zhu Y, Hu Y. Efficient semantic search on DHT overlays.
Journal of Parallel and Distributed Computing, 2007, 67(5):
604-616.

[10] Clarke I, Sandberg O, Wiley B, Hong T W. Freenet: A dis-
tributed anonymous information storage and retrieval system.
In Proc. the 2000 Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, USA, July 25-26, 2000, pp.46-
66.

[11] Manku G S, Bawa M, Raghavan P. Symphony: Distributed
hashing in a small world. In Proc. the 4th USENIX Sym-
posium on Internet Technology and Systems (USITS 2003),
Seattle, USA, March 26-28, 2003.

[12] The Gnutella Protocol Specification VO0.4. http://www.stanfo-
rd.edu/class/cs244b/gnutella_protocol- 0.4.pdf.

[13] Lv Q, Cao P, Cohen E et al. Search and replication in un-
structured peer-to-peer networks. In Proc. the 16th ACM In-
ternational Conference on Supercomputing (ACM ICS 2002),
New York, USA, June 22-26, 2002, pp.84-95.

[14] Yang B, Garcia-Molina H. Improving search in peer-to-peer
networks. In Proc. the 22nd IEEE International Conference
on Distributed Computing (IEEE ICDCS 2002), Vienna, Aus-
tria, July 2-5, 2002.

[15] Crespo A, Garcia-Molina H. Routing indices for peer-to-peer
systems. In Proc. the 22nd International Conference on Dis-
tributed Computing Systems (IEEE ICDCS 2002), Vienna,
Austria, July 2-5, 2002.

[16] Zhu'Y, Yang X, Hu Y. Making search efficient on Gnutella-like
P2P systems. In Proc. the 19th IEEE International Parallel
& Distributed Processing Symposium (IPDPS 2005), Denver,
USA, April 3-8, 2005.

[17] Faye D, Nachouki G, Valduriez P. Semantic query routing in
SenPeer, a P2P data management system. In Lecture Notes
in Computer Science 4658, Enokido T et al. (eds.), Springer-
Verlag, 2007, pp.365-374.

[18] Dohnal V, Sedmidubsky J. Query routing mechanisms in
self-organizing search systems. In Proc. the 2nd Inter-
national Workshop on Similarity Search and Applications
(SISAP 2009), Prague, Czech Republic, August 29-30, 2009,
pp.132-139.

[19] Haase P, Siebes R, Harmelen F V. Expertise-based peer se-
lection in Peer-to-Peer networks. Knowledge and Information
Systems, 2008, 15(1): 75-107.

[20] Pirro G, Ruffolo M, Talia D. Advanced semantic search
and retrieval in a collaborative peer-to-peer system. In
Proc. the 2008 International Workshop on Content Mana-
gement and Delivery in Large-Scale Networks (UPGRADE-
CN 2008), Boston, USA, June 23-27, 2008, pp.65-72.

[21] Bawa M, Manku G, Raghavan P. SETS: Search enhanced by
topic segmentation. In Proc. the 26th Annual International
ACM SIGIR Conference (SIGIR 2003), Toronto, Canada,
July 28-August 1, 2003, pp.306-313.

[22] Shen H T, Shu Y, Yu B. Efficient semantic-based content
search in P2P network. IEEFE Transactions on Knowledge
and Data Engineering, 2004, 16(7): 813-826.

[23] Zhou Y, Croft W B, Levine B N. Content-based search in

8

Jun-Cheng Huang et al.: A Semantic Searching Scheme in Heterogeneous Unstructured P2P Networks 941

peer-to-peer networks. Technical Report, University of Mas-
sachusetts, 2004.

[24] Witschel H F. Content-oriented topology restructuring for
search in P2P networks. Technical Report, University of
Leipzig, Germany, 2005.

[25] Zhu'Y, Hu Y. Enhancing search performance on Gnutella-like
P2P systems. IEEE Transactions on Parallel and Distributed
Systems, 2006, 17(12): 1482-1495.

[26] Yang X, Hu Y. SEIF: Search enhanced by intelligent feedback
in unstructured P2P networks. In Proc. International Con-
ference on Parallel Processing, Vienna, Austria, September
22-25, 2009, pp.494-501.

[27] Zhong S. Efficient online spherical K-means clustering.
In Proc. IEEE Int. Joint Conf. Neural Networks
(IJCNN 2005), Montreal, Canada, July 31-August 4, 2005,
pp.3180-3185.

[28] Wang Q, Li R, Chen L, Lian J, Ozsu M T. Speed up semantic
search in P2P networks. In Proc. the ACM 17th Conference
on Information and Knowledge Management (CIKM 2008),
Napa Valley, USA, October 26-30, 2008, pp.1341-1342.

[29] Kacimi M, Yetongnon K. Similarity search in a hybrid over-
lay P2P network. In Proc. the 11th IEEE Symposium
on Computers and Communications (ISCC 2006), Cagliari,
Ttaly, June 26-29, 2006.

[30] Comito C, Patarin S, Talia D. A semantic overlay net-
work for P2P schema-based data integration. In Proc. the
11th IEEE Symposium on Computers and Communications
(ISCC 2006), Cagliari, Italy, June 26-29, 2006.

[31] Yang X, Hu Y. Search enhanced by distributed semantic clus-
tering in Gnutella-like P2P systems. In Proc. the 15th Inter-
national Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication (MASCOTS 2007), Is-
tanbul, Turkey, October 24-26, 2007, pp.318-324.

[32] Huang J, Li X, Wu J. A class-based search system in unstruc-
tured P2P networks. In Proc. the 21st International Con-
ference on Advanced Networking and Applications, Niagara
Falls, Canada, May 21-23, 2007, pp.76-83.

[33] Ng C H, Sia K C. Peer clustering and firework query model.
In Proc. the 11th International World Wide Web Conference
(WWW 2002), Honolulu, Hawaii, USA, May 7-11, 2002.

[34] Crespo A, Garcia-Molina H. Semantic overlay networks for
P2P systems. In Lecture Notes in Computer Science 3601,
Garbonell J G, Siekmann J (eds.), Springer-Verlag, 2005,
pp.1-13.

[35] Lin K, Wang C, Chou C, Golubchik L. SocioNet: A social-
based multimedia access system for unstructured P2P net-
works. IEEE Transactions on Parallel and Distributed Sys-
tems, 2010, 21(7): 1027-1041.

[36] Deconinck G, Vanthournout K. Agora: A semantic overlay
network. International Journal of Critical Infrastructures,
2009, 5(1/2): 175-195.

[37] Chawathe Y, Ratnasamy S, Breslau L, Lanham N, Sheaker S.
Making gnutella-like P2P systems scalable. In Proc. the 2003
Conf. Applications, Technologies, Architecture, and Proto-
cols for Computer Communications (SIGCOMM 2003), Karl-
sruhe, Germany, August 25-29, 2003, pp.407-418.

[38] Berry M W, Drmac Z, Jessup E R. Matrices, vector spaces,
and information retrieval. SIAM Review, 1999, 41(2): 335-
362.

[39] Text REtrieval Conference (TREC). http://trec.nist.gov,
May, 2010.

[40] McCallum A K. Rainbow toolkit. http://www.cs.cmu.edu/
~mccallum/bow/, May, 2010.

Jun-Cheng Huang received the
Bachelor degree in electronic en-
gineering from Fudan University,
China in 2004 and the Master’s de-
gree in computer engineering from

L — Florida Atlantic University, USA, in

/) 2006. He is currently working in

‘)ﬂ‘ ‘ Shanghai Hewlett-Packard Co., Ltd.

; as a senior software engineer. He

used to be a software engineer in Mo-

torola USA division. His research interests lie in distributed

computing, routing protocols, mobile computing, wireless

and P2P networks. He is also interested in the development
of large-scale enterprise software and platform.

Xiu-Qi Li is an assistant pro-
fessor at Department of Computer
Science and Mathematics in Univer-
sity of North Carolina at Pembroke
(UNCP), Pembroke, North Carolina,
USA. Prior to joining UNCP, she
worked as a senior instructor in
Florida Atlantic University, Boca
Raton, Florida, USA for five years.
She earned Faculty Summer Re-
search Fellowship in 2010. She served as program committee
member and session chair in 12 conferences. She holds 26
peer-reviewed journal and conference papers. Her research

interests include networking, security, multimedia, and web
mining. She is a member of ACM and IEEE.

Jie Wu is chair and professor in
the Department of Computer and In-
formation Sciences, Temple Univer-
sity. Prior to joining Temple Uni-
versity, he was a program director at
National Science Foundation of USA.
His research interests include wire-
less networks and mobile comput-
ing, routing protocols, fault-tolerant
computing, and interconnection net-
works. He has published more than 500 papers in various

journals and conference proceedings. He serves in the edito-
rial board of the IEEE Transactions on Computers, Journal
of Parallel and Distributed Computing, IEEE Transactions
on Mobile Computing. Dr. Wu was also general co-chair for
IEEE MASS 2006, IEEE IPDPS 2008, and DCOSS 2009.
He is program co-chair for IEEE INFOCOM 2011. He has
served as an IEEE Computer Society distinguished visitor.
Currently, Dr. Wu is the chairman of the IEEE Technical
Committee on Distributed Processing (TCDP) and an ACM
distinguished speaker. Dr. Wu is a Fellow of the IEEE.

